Some simple ECC tricks

Mike Hamburg
Rambus Cryptography Research

Optimize for
security
simplicity
Speed
In that order!

First corollary: use Edwards

Simpler and faster than short Welerstrass
Complete arithmetic B almost always worth It

Easily makes up for the cofactor of 4 or 8

This talk: simple tricks

Example library APIs

Scalar multiplication:
Signed binary scalars
Fixed-base precomputed combs

Arithmetic:
Inverse square root trick

Algorithmic:
Encoding to an elliptic curve with Elligator 2
ODecafO: use quotient groups instead of subgroups

Time permitting:
STROBE lite accumulator
Twist rejection
The 4-isogeny strategy

Library API

Special-purpose library

Support ECDH, Schnorr signatures
¥ Scalar*Point (ECDH/keygen/sign)
¥ Scalar*Scalar + Scalar (Schnorr sign)
¥ Scalar*Point - Scalar2*Base (Sig verify)
¥ Optional: Scalar*Base (fast keygen/sign)

Operate always on serialized elements.

General-purpose library

Ser/deser
Add/sub
Mul by scalar

Eq test
Copy/destroy
Invert
Elligator

Maybe also: s1P1+s2P- protected,;
sG protected; s1P1+s2G unprotected

General-purpose library

What operations might be bottlenecks?

Ser/deser

Add/sub . , called from
scalarmul

Mul by scalar

Eq test
Copy/destroy
Invert
Elligator

Maybe also: s:P:+s,P> protected,;
sG protected; s1P1+s>G unprotected

Don’t need to optimize anything else!
Cor: no need for eg afPne point formats

Questions about API?

Signed binary scalars

Good for simplicity, security and speed!

[GIMRV-2011-CoZ]
[H-2012-FastCompact]

What this trick does

Compute s,P N> sP
Completely regular double/add algorithm

DoesnOt skip 0 bits, doesnOt leak bits of scalar
Take advantage of negation map P N> PP

Within 1% performance of fastest algo available

ldea

Take advantage of negation map

Use digits {-1,1} instead of {0,1}

Downside: All numbers are odd!

Not a problem if group order g is odd

Binary N> signed binary

r = 100110
sbin(z) = 111111
want x s.t. sbin(x) = some scalar s
sbin(x) —2x = 111111
~ -1
s+ 2" —1
L =

2

Sighed binary ladder

Variable base scalarmul: s, P N> sP

Recode s: s= ... 199991 ...

Q=0

Fori = n-1 down to O:
fsi=1: Q:=2Q+ P
else: Q :=2Q bP

Sighed binary Pxed window

Variable base scalarmul: s, P N> sP

Precompute: (199,191,112, 111)P =(1,3,5,7)P
Recode s: s= ... 199 991 ...

Q=0

For i = n-w down to O:
Forj=1tow: Q=20
Q = Q * table[s[I..I+w]]

Questions about
signed binary?

Comb algorithms

Fast, secure, relatively simple bxed-base scalarmul

[LimLee-1994-ExpPrecomp]
[HMV-2004-GuideECC]
[HPB-2004-Combs]
[FZZ1-2006-MsbComb]
[H-2012-FastCompact]
and several others

What this trick does

Fixed window scalar mul computes s,P N> sP
Comb algorithm computes s N> sG

G known In advance
Performance: about 3x as fast as bxed window

State of the art: fastest bxed-base algo available,
even with endomorphisms

Comb algorithm

Fixed-base secret scalarmul: s N> sG
Have already precomputed multiples of G
With bxed window table

iiﬁ -G

Eg: (111 111
1)-G-2° 4+ (111)-G)-2° = (111) - G

= ((11

Overall 2¥-1 points, n/w-1 adds, n-w doubles

Comb algorithm

Elements of table have space between digits

Eg: (111111111) - G
- 100101 -22.@G
+ 1001001 -2-G

— 111G

Overall 2¥-1 points, n/w-1 adds, n/w-1 doubles

Scaling the table size

Decreasing returns: 2%-1 points for 1/w work

To avoid cache timing, have to scan entire table

CanOt easily reduce #adds in regular algorithm
each add/sub covers at most 1+log(#points) bits

Reduce #doubles?

Multiple combs

Use more than one table to reduce the number of doubles

Eg 2 tables, 3 bit-combs:

(119191999 191919199) - G
= (1019 .2°%G+10%91 -G)-22
+ (1099 .22G—- 1. 91 -G)-2
+ (—=1091-22G+ 1.9 9.G)

Overall 2"t points, n/w-1 adds, n/tw-1 doubles

Use a simple script to Pnd the optimal tradeoff point

Comb pseudocode

Given s, compute sG
Assume we have t combs with w teeth each spaced d apart

Recode s in signed binary

Q=0

Fori=d b 1downtoO:
Q=2Q
Forj=0totb 1:

ks

|ndex — 2k3i+d(wj + k)
If index > 0: Q += comb j][index]
Else: Q -= comb| j][-indeX]

Questions about
combs?

The Inverse square
root trick

Adds speed at a small cost In complexity

[BDLSY-2011-EdDSA]
[H-2012-FastCompact]

What this trick does

Compute /z/y twice as fast as the obvious way
optionally also compute 1/z
have to make sure that inputs are nonzero

Eg. Edwards decompression: X = *

Simplicity: unify division and sqrt at cost of ~1%

Square root of a ratio

Ify ==
Let s

Check (sx)*y

0
1
VXY
X
Then sx \ﬁ
y

NB: this works for x = 0O If inverse sqrt algorithm returns O

Inverse from inv sgrt

Need to mind the +

. 1 1 ?
Simple enough: — = xa —L—
X + X

Reduce code size by having only one routine

Batch inverse and sqrt

If x,y,z £ O
1
Llets = |
XyZ?2
Check s°xyz? = 1
Then s°xyz = .
And sxz = A
y

How to compute 1/ x

If p! 3 (mod4):% En

— X4
nl p! 5
If p! 5 (mod8):—§ = X 8
1 | —
X

Costs about as much as an inversion with FLT

Questions about
Invsgrt?

Encoding to an elliptic
curve with Elligator 2

A simple explanation

[SvdW-2006-Construction]
[BHKL-2013-Elligator]

What this trick does

Given an input r, produce a point (X,y) on the curve
The map Is 2:1 from the Peld, not quite uniform

Apply twice and add Is uniform

Cost: one inverse/sguare root operation + ~20M

Encoding to EC Is useful

Steganography

Password-authenticated key exchange:
EKE, SPEKE, Dragonl3y, SPAKE2-EE

Tight signatures [GJKW-2007-Tight]

Short signatures [BonehBoyen-2004-Short]

Oblivious function evaluation [JareckiLiu-2009-OFE]

Elligator 2

Requires a point of order 2, char(F) > 3
Generically: Cy? = x(x?+ Ax + B)

Obvious solution: set x=r;whilenoy, x:=x+1
No good: variable time and not uniform

ldea: Given r, choose (X1,X2)
Ensure that ratio of their y2 Is not square
N> one will be on the curve and the other not

Elligator 2

Y2 o é371 + Ax1 + B
y% T :13% + Axo + B

We want to be nonsquare

It sufbces to set x% + Ax1 + B = :1:3 + Axo + B
& X1+ Lo = —A

L1 :
and also == = ur® where u is a bxed nonsguare

L9

— Aur? —A

To —
1+ ur2’ 2 14 ur?

Solving: rT1 =

Computing Elligator 2

> X(x*+ Ax+B) A élA2ur2! B(1+ ur?)? é' ur 2
a C - C (1+ ur?)3 1

Set u as a 2"th root of unity (eg, -1 or 1)

Square root algo gives you either vratio or VU - ratio

If itOs the latter, multiply byr Upshot: takes

about 1 sqrt
operation

Adjust low bit of y : even if ratio , odd

Questions about
Elligator 27

ODecafO cofactor
elimination

For protocols that require prime-order groups

[H-2015-Decalf]

What this trick does

Make a group of order g from a curve of order 4q
Cost: almost free (I.e. ~20% faster than subgroup)

~10 lines of code

Motivation

Some protocols are easier with prime-order groups
Can usually be adapted with care
Most commonly: multiply by cofactor h

Previous work: use a subgroup of G

Effective, but subgroup check Is expensive

Decaf: use a quotient group

Quotient: Py = P2 Iff P1 - P2 € G[N]

Let E be an Edwards curve with
cofactor h=4

G[4] I1s 900U rotations

P1 P2 Iff L1Y2 = T2Y1 O X1Xg =

Decaf: serialize

Always write to wire as
distinguished point

OFirst quadrantO

L A

y positive, X nonnegative
l.e.xand yeven,y"O0

Compress: just send vy

Questions about
decaf?

ThatOs all!

Example library APIs

Scalar multiplication:
Signed binary scalars
Fixed-base precomputed combs

Arithmetic: QueSthnS7

Inverse square root trick
Algorithmic:
Encoding to an elliptic curve with Elligator 2

ODecafO cofactor elimination

STROBE lite accumulator

References

[AhmadiGranger-2011-lsogenyClasses| Ahmadi and Granger, On isogeny
classes of Edwards curves over bnite belds
http://eprint.iacr.org/2011/135

[BDPVAVK-2014-Keyak-v1] Bertoni et al., CAESAR submission: Keyak v1
http://competitions.cr.yp.to/roundl/keyakvl.pdf

IBDLSY-2011-EdDSA] Bernstein et al., High-speed high-security signatures .
http://ed25519.cr.yp.to/ed25519-20110926.pdf , JCE 2012

[BHKL-2013-Elligator] Bernstein et al., Elligator: Elliptic-curve points
Indistinguishable from uniform random strings .
ACM-CCS 2013

http://eprint.iacr.org/2011/135
http://ed25519.cr.yp.to/ed25519-20110926.pdf

References

IBonehBoyen-2004-Short] Boneh and Boyen, Short signatures without random
oracles.
EUROCRYPT 2004

[FZZ1-2006-MsbComb] Feng, Zhu, Zhao, Li, Signed MSB-set comb method for
elliptic curve point multiplication.
Information Security Practice and Experience 2006

[GIJKW-2007-Tight] Goh et al., Efbcient Signature Schemes with Tight
Reductions to the DifPe-Hellman Problems
Journal of Cryptology, 2007

IGIMRV-2011-CoZ] Goundar, Joye, Miyagi, Rivain, Venelli, Scalar Multiplication
on Weierstrag Elliptic Curves from Co-Z Arithmetic
Journal of Cryptographic Engineering, 2011

References

[H-2014-Isogenies] Hamburg, Twisting Edwards curves with isogenies
https://eprint.iacr.org/2014/027

[H-2015-Decaf] Hamburg, Decaf: Eliminating cofactors through point
compression
https://eprint.iacr.org/2015/673 , CRYPTO 2015

[H-WIP-StrobeLite] Hamburg, STROBE lite sponge framework,
https://github.com/bitwiseshiftleft/strobelite

[H-2012-FastCompact] Hamburg, Fast and compact elliptic-curve cryptography.
http://eprint.iacr.org/2012/309

https://eprint.iacr.org/2014/027
https://eprint.iacr.org/2015/673
https://github.com/bitwiseshiftleft/strobelite
http://eprint.iacr.org/2012/309

References

I[HMV-2004-GuideECC] Hankerson, Vanstone, Menezes, Guide to Elliptic Curve
Cryptography.
Springer-Verlag, 2004

[HPB-2004-Combs] Hedabou, Pinel, BZnZteau, A comb method to render ECC
resistant against Side Channel Attacks.
https://eprint.iacr.org/2004/342

[JareckiLiu-2009-OFE] Jarecki and Liu, EfPcient oblivious pseudorandom
function with applications to adaptive ot and secure computation of set
Intersection.

TCC 2009

[LimLee-1994-ExpPrecomp] Lim and Lee, More [3exible exponentiation with
precomputation.
CRYPTO 1994

https://eprint.iacr.org/2004/342

References

[Saarinen-2013-Blinker] Saarinen, Beyond Modes: Building a Secure Record
Protocol from a Cryptographic Sponge Permutatio n.
CT-RSA 2014, https://eprint.iacr.org/2013/772

[ISvdW-2006-Construction] Shallue and van de Woestijne, Construction of
rational points on elliptic curves over Pnite pelds.
ANTS 2006

https://eprint.iacr.org/2013/772

STROBE lite
accumulator

Simple and secure but not fast or standard

[Saarinen-2013-Blinker]
[BDPVAVK-2014-Keyak-v1]
[H-WIP-StrobelLite]

What this trick does

Replace all your symmetric crypto with sponges
Good for protocols and noninteractive crypto

Somewhat slow, but very very compact (<2kB code)

The rest of the protocol

ECC for asymmetric. What about symmetric?
(session key, validators) = hash of handshake msgs?
Parseable, domain separated

Sign hash of handshake msgs?

Premaster secret

Handshake
hash ctx
Encrypted handshake msgs? 1%@71 E;%Qp
Server finished
¢ d | g

Cipher modes? Framing?

STROBE lite

One sponge construction for everything!
Replace hash and cipher

Variant of Markku-Juhani O. SaarinenOs BLINKER

Choose your favorite sponge
KeccakF[800] for STROBE lite
< 2kB code (thumb2 C)
<(104,128) or (32,240) bytes (memory,stack)
OK speed: ~200cpb (encrypt 256B) on Cortex-M3

STROBE lite operations

Break down protocol into (tag, operation, data) tuples

Absorb: inject new material into cipher, eg key
Plaintext: absorb and also send in the clear

Sgueeze: extract pseudorandom data

Duplex: encrypt by xoring with squeezed data

Reverse duplex: decrypt or forget

STROBE lite duplex mode

tag, op, E
rate capacity

544+2 b 256-2 b

2reye Control
| K1
‘.\I Al WO rd

A
\

frame

4
\\

Ct

Maore Next 9
data control ct

Example: encryption

KEY ‘
il —
(N
U

(N

/A
uo

4 cipheriext

MAC E|/ M

Example: toy protocol

Hello

VO

I

N
3V

[1

.]

U

A
Y

N
%%

I

N

UV
A

-
D

—

N
%

N

H@

N

N

DN
3V

|

AR\
¢V

A

N

/A
N

|

N
3V

1

Questions about
STROBE lite?

Montgomery ladder
with twist rejection

Can improve security at a small
cost to simplicity and speed

[H-2012-FastCompact]
with correc tions

What this trick does

Reject twisted points in the Montgomery ladder
(Optionally, but as written) reject points of small order

Cost: ~0.1% performance, < 10 lines of code

Motivation

Curve255190s twist is secure for ECDH
Maybe your curveOs twist is terrible?
Maybe your protocol doesnOt tolerate twist?
Maybe you want to mimic an Edwards impl?
For whatever reason, letOs reject twist points.

And small torsion while weOre at itE

The doubling formula

(X% — 1)? " x2_-1 4

Xn = —
° 7 AX(X2+ AX + 1) 2y

Even pointOx is always square if and only if on curve!

Rejecting twist points

Assumption: clearing a cofactor divisible by 2

Instead of Pnishing with X/Z = XZ P~

Compute s:= 1/XZ =(XZ)P-d/4

Check SZXZ 2 1 See earlier slide for

Pp=1mod4

Finally, X/Z = s°XX . Extra cost: #+2 beld multiplies

For short Welerstrass curves: use invsgrt trick instead

Questions about twist
rejection?

The 4-1sogeny strateqy:
Twisted vs untwisted
Edwards curves

Improves speed at a small cost to complexity

[AhmadiGranger-2011-lIsogenyClasses]
[H-2014-Isogenies]

What this trick does

Translate operation from untwisted Edwards curve to
twisted

Avoid problems with points at $ on twisted curves

Gain ~10% speed improvement for modest
complexity

Within 2% performance of fastest algo available

Twisted vs untwisted

Twisted Edwards a = B1.

Slightly simpler

About 10% faster than a = 1 (save ~1M)
When p = 1 mod 4, models are isomorphic
When p = 3 mod 4, twisted curves are incomplete

E for operations involving points at $

The 4-isogeny strategy

Edwards Twisted Edwards
ax® + y* =1+ dx°y? lax?+ dy? =1+ (d! a)x?y?
2XY y% + ax?

alxy) = y21 ax2’ 2! y21 ax?

The 4-isogeny strategy

Compute most things on Edwards curve
Complete addition formulas!

Compute scalarmuls in twisted Edwards
If cofactor = 4, addition laws complete on Im !
s
Instead of sP, compute %, 7 & a(P)

This clears the cofactor

Questions about
Isogeny strategy?

